Preferential heterochiral cyclic trimerization of 5-(aminoethyl)-2-furancarboxylic acid (AEFC) driven by non-covalent interactions.
نویسندگان
چکیده
Theoretical justification for preferential heterochiral cyclic trimerization of 5-(aminoethyl)-2-furancarboxylic acid (AEFC) is attempted using density functional theory (DFT) calculations. Results from explicit solvent assisted reaction pathways indicate greater stability of heterochiral cyclic tripeptides over their homochiral counterparts, contrary to findings from gas phase and implicit solvent phase results. Pathways explored at M06/6-31G(d,p) and MP2/6-31G(d,p) levels of theory show kinetic preference for heterochiral cyclization. Analysis of optimized geometries reveals existence of strong hydrogen bonding interactions in the solvated heterochiral tripeptides. Thus, the ability of the cyclic tripeptides to form strong noncovalent interactions increases with conversion of stereochemistry at one of its chiral centers from homo to heterochiral conformation. The resulting change in molecular symmetry facilitates the interacting sites to reorient such that the peptide can interact with a nucleophile from both the faces. This is further substantiated by computed IR spectra, NBO and AIM data. Additionally, justification for the stability of heterochiral cyclic tripeptides comes from molecular electrostatic potential and electron density surfaces. These studies show clearly that for the kind of systems presented here, gas phase or implicit solvent phase studies are inadequate in explaining realistic situations. Calculations with solvent molecules, even if a few only, are necessary to substantiate experimental observations.
منابع مشابه
The effect of polylactic acid support in stability and electrical field of heterocyclic coupled hexa peptide nano systems: A novel strateu to drug delivery
Biological materials. recently. are the building blocks of several self-assembling peptide and protein systems.The main challenge In molecular self-assembly is to design molecular building blocks that can undergospontaneous organization. These cyche peptides were produced by an alternating fl'ell number of D- and Laminoacids.which interact through non-covalent interactions co an array of selfas...
متن کاملNon-covalent interactions at electrochemical interfaces: one model fits all?
The shift with increasing concentration of alkali-metal cations of the potentials of both the spike and the hump observed in the cyclic voltammograms of Pt(111) electrodes in sulfuric acid solutions is shown to obey the simple model recently developed by us to explain the effect of non-covalent interactions at the electrical double layer. The results suggest that the model, originally developed...
متن کاملHighly stable cyclic dimers based on non-covalent interactions.
Highly stable cyclic dimers have been assembled through a combination of non-covalent interactions, including multiple hydrogen bonding, parallel stacking and hydrophobic shielding.
متن کاملNon-covalent interactions of the carcinogen (+)-anti-BPDE with exon 1 of the human K-ras proto-oncogene.
Investigating the complementary, but different, effects of physical (non-covalent) and chemical (covalent) mutagen-DNA and carcinogen-DNA interactions is important for understanding possible mechanisms of development and prevention of mutagenesis and carcinogenesis. A highly mutagenic and carcinogenic metabolite of the polycyclic aromatic hydrocarbon benzo[α]pyrene, namely (+)-anti-BPDE, is kno...
متن کاملDevelopment of low-molecular-weight gelators and polymer-based gelators
In this review, the development of low-molecular-weight gelators and polymer-based gelators is described. The driving forces for physical gelation are non-covalent bonds, such as hydrogen bonds, electrostatic interactions, van der Waals interactions and p–p interactions. When gelation occurs, the gelator molecules self-assemble into macromolecule-like aggregates through non-covalent intermolecu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular graphics & modelling
دوره 38 شماره
صفحات -
تاریخ انتشار 2012